Lab report (Mechanics Of Materials) I have All the data, I need you to make the Lab report according to the rubric. THIS IS AN EMAIL SENT BY THE PROFESSOR
Lab report (Mechanics Of Materials) I have All the data, I need you to make the Lab report according to the rubric.
THIS IS AN EMAIL SENT BY THE PROFESSOR
>>>>
“The attached lab reports are from some of my previous courses during my undergrad years, there are a few sections that I do not have included in the lab reports but given both of them you should get an idea of what is expected with given info and the layout of the lab report that you are currently working on. As I told all the lab sections, here is the link to the youtube video of the experiment, as I stated I really like this video and think that it is very detailed in its explanation of what is going on.
https://www.youtube.com/watch?v=D8U4G5kcpcM&t=325s” Brass
Lo (in)
2
Lf (in)
Do (in)
Df (in)
Area (in )
2
2,53
0,505
0,38
0,2003
Load(lbf)
0
100
900
1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500
4750
5000
5250
5500
5750
6000
6250
6500
6750
7000
7500
7250
7750
8000
8250
8500
8750
9000
9250
9500
9750
10000
Deflection (in)
0,0000
0,0059
0,0103
0,0108
0,0122
0,0133
0,0146
0,0162
0,0171
0,0182
0,0193
0,0206
0,0223
0,0227
0,0239
0,0250
0,0261
0,0273
0,0284
0,0294
0,0308
0,0318
0,0323
0,0345
0,0361
0,0372
0,0386
0,0396
0,0431
0,0414
0,0447
0,0463
0,0463
0,0504
0,0527
0,0560
0,0590
0,0659
0,0787
0,1000
Stress (psi)
0
499,260678
4493,3461
4992,60678
6240,75848
7488,91017
8737,06187
9985,21357
11233,3653
12481,517
13729,6687
14977,8203
16225,972
17474,1237
18722,2754
19970,4271
21218,5788
22466,7305
23714,8822
24963,0339
26211,1856
27459,3373
28707,489
29955,6407
31203,7924
32451,9441
33700,0958
34948,2475
37444,5509
36196,3992
38692,7026
39940,8543
41189,006
42437,1577
43685,3093
44933,461
46181,6127
47429,7644
48677,9161
49926,0678
Strain (in/in)
0
0,00295
0,00515
0,0054
0,0061
0,00665
0,0073
0,0081
0,00855
0,0091
0,00965
0,0103
0,01115
0,01135
0,01195
0,0125
0,01305
0,01365
0,0142
0,0147
0,0154
0,0159
0,01615
0,01725
0,01805
0,0186
0,0193
0,0198
0,02155
0,0207
0,02235
0,02315
0,02315
0,0252
0,02635
0,028
0,0295
0,03295
0,03935
0,05
10250
10500
10750
11000
11200
11000
10500
10250
0,1267
0,1678
0,2324
0,2900
0,4300
0,5500
0,6100
0,6483
51174,2195
52422,3712
53670,5229
54918,6746
55917,196
54918,6746
52422,3712
51174,2195
0,06335
0,0839
0,1162
0,145
0,215
0,275
0,305
0,32415
Aluminum
Lo (in)
2
Lf (in)
Do (in)
Df (in)
Area (in )
2,05
2,416
0,505
0,32
0,2003
Load(lbf)
0
250
500
750
1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500
4750
5000
5250
5500
5750
6000
6250
6500
6750
7000
7500
7250
7750
8000
8250
8500
8670
7500
7000
6400
Deflection (in)
0,0000
0,0030
0,0047
0,0063
0,0077
0,0090
0,0104
0,0117
0,0130
0,0144
0,0157
0,0170
0,0182
0,0196
0,0208
0,0221
0,0234
0,0247
0,0259
0,0272
0,0285
0,0298
0,0311
0,0323
0,0335
0,0348
0,0361
0,0374
0,0388
0,0401
0,0417
0,0447
0,0555
0,0955
0,1488
0,2550
0,3780
0,4610
0,5010
Stress (psi)
0
1248
2496
3744
4993
6241
7489
8737
9985
11233
12482
13730
14978
16226
17474
18722
19970
21219
22467
23715
24963
26211
27459
28707
29956
31204
32452
33700
34948
37445
36196
38693
39941
41189
42437
43286
37445
34948
31953
Strain (in/in)
0,0000
0,0015
0,0023
0,0031
0,0038
0,0044
0,0051
0,0057
0,0063
0,0070
0,0077
0,0083
0,0089
0,0096
0,0101
0,0108
0,0114
0,0120
0,0126
0,0133
0,0139
0,0145
0,0152
0,0158
0,0163
0,0170
0,0176
0,0182
0,0189
0,0196
0,0203
0,0218
0,0271
0,0466
0,0726
0,1244
0,1844
0,2249
0,2444
Steel
Lo (in)
Lf (in)
Do (in)
Df (in)
Area (in )
2,00
2,76
0,505
0,295
0,2003
Load(lbf)
0
250
500
750
1000
1250
1500
1750
2000
2250
2500
2750
3000
3250
3500
3750
4000
4250
4500
4750
5000
5250
5500
5750
6000
6250
6500
6750
7000
7500
7250
7750
8000
8250
8500
8750
9000
9250
9500
9800
Deflection (in)
0,0000
0,0021
0,0037
0,0051
0,0062
0,0072
0,0081
0,0091
0,0100
0,0109
0,0118
0,0127
0,0136
0,0145
0,0154
0,0163
0,0171
0,0180
0,0188
0,0197
0,0206
0,0215
0,0223
0,0231
0,0239
0,0247
0,0256
0,0264
0,0272
0,0280
0,0288
0,0296
0,0305
0,0313
0,0321
0,0329
0,0337
0,0345
0,0415
0,0450
Stress (psi)
0
1248
2496
3744
4993
6241
7489
8737
9985
11233
12482
13730
14978
16226
17474
18722
19970
21219
22467
23715
24963
26211
27459
28707
29956
31204
32452
33700
34948
37445
36196
38693
39941
41189
42437
43685
44933
46182
47430
48928
Strain (in/in)
0,0000
0,0011
0,0019
0,0026
0,0031
0,0036
0,0041
0,0046
0,0050
0,0055
0,0059
0,0064
0,0068
0,0073
0,0077
0,0082
0,0086
0,0090
0,0094
0,0099
0,0103
0,0108
0,0112
0,0116
0,0120
0,0124
0,0128
0,0132
0,0136
0,0140
0,0144
0,0148
0,0153
0,0157
0,0161
0,0165
0,0169
0,0173
0,0208
0,0225
2
10000
10250
10500
10750
11000
11250
11500
11750
12000
12250
12500
12750
13000
13250
13500
13750
14000
14250
14325
12500
11000
0,0907
0,0956
0,1018
0,1090
0,1175
0,1265
0,1365
0,1478
0,1604
0,1735
0,1879
0,2032
0,2258
0,2490
0,2758
0,3130
0,3780
0,5580
0,571
0,6300
0,6500
49926
51174
52422
53671
54919
56167
57415
58663
59911
61159
62408
63656
64904
66152
67400
68648
69896
71145
71519
62408
54919
0,0454
0,0478
0,0509
0,0545
0,0588
0,0633
0,0683
0,0739
0,0802
0,0868
0,0940
0,1016
0,1129
0,1245
0,1379
0,1565
0,1890
0,2790
0,2855
0,3150
0,3250
ENGR 350 A-001: Tentative Lab Schedule
Description
Assign Date
Tension Lab
1/22/2019
Compression Lab
2/12/2019
Buckling Lab
2/26/2019
Torsion Lab
3/19/2019
Shear and Moment Lab
4/2/2019
Lab Final
4/16/2019
Due Date
2/12/2019
2/26/2019
3/19/2019
4/2/2019
4/16/2019
4/16/2019
ENGR 350 A/B-002: Tentative Lab Schedule
Description
Assign Date
Tension Lab
1/22/2019
Compression Lab
2/12/2019
Buckling Lab
2/26/2019
Torsion Lab
3/19/2019
Shear and Moment Lab
4/2/2019
Lab Final
4/16/2019
Due Date
2/12/2019
2/26/2019
3/19/2019
4/2/2019
4/16/2019
4/16/2019
ENGR 350 A/B-003: Tentative Lab Schedule
Description
Assign Date
Tension Lab
1/23/2019
Compression Lab
2/13/2019
Buckling Lab
2/26/2019
Torsion Lab
3/19/2019
Shear and Moment Lab
4/3/2019
Lab Final
4/17/2019
Due Date
2/13/2019
2/26/2019
3/19/2019
4/3/2019
4/17/2019
4/17/2019
ENGR 350 A/B-004: Tentative Lab Schedule
Description
Assign Date
Tension Lab
1/24/2019
Compression Lab
2/14/2019
Buckling Lab
2/27/2019
Torsion Lab
3/20/2019
Shear and Moment Lab
4/4/2019
Lab Final
4/18/2019
Due Date
2/14/2019
2/27/2019
3/20/2019
4/4/2019
4/18/2019
4/18/2019
Rectilinear Dynamic System Control
ME 407
Measurements & Controls
Lab 8
Lab Conducted By:
Sulaiman Alareefi
David McKavanagh
Cameron Bowes
Maxwell Hopkins
Lab Report Written By:
David McKavanagh
Due By:
12/2/2016
1|Page
Table of Contents
Section
Page
Title Page
1
Table of Contents
2
Procedure
3
Results
3
❖
❖
❖
❖
❖
❖
❖
❖
❖
❖
❖
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Analysis
3
4
4
5
5
6
6
7
7
8
8
9
Conclusions
2|Page
Procedure
First the system must be set up properly, with the four 500g masses on the first
carriage, no springs or dampers connected to it, and the other carriages secured out of range of
the first carriage’s path. Set Ts at 0.00442, the step size of 0, duration set to 3000 ms, and
repetition of 1. Once these amounts have been entered the PID controller needs to be set up
with the value found, and then execute the program, when the program is finished the data is
exported for use later. The process is repeated with the derivative gain, critically damped,
overdamped, and the integral gain.
Results
Figure 1: Proportional Gain
3|Page
Figure 2: Doubled Proportional Gain
Figure 3: Derivative Gain
4|Page
Figure 4: Five Times Derivative Gain
Figure 5: Underdamped
5|Page
Figure 6: Critically Damped
Figure 7: Overdamped
6|Page
Figure 8: Integral Gain
Figure 9: Integral Gain Doubled
7|Page
Figure 10: Integral Gain Halved
Figure 11: Integral Adjusted
8|Page
Analysis
Through this experiment the carts mass and the mass upon it is unchanged. It was
possible to find out the natural frequency for each of the trial with the data that was graphed. From the
four figures above it was possible to find To, Xo, Tn, Xn, and n for each of the segments of the lab. τd=(τnτo)/n, then uses τd for ωd=(2π)/τd then δ=(1/n)ln(Xo/Xn), from there the value d would be used to find ζ
which is ζ=(1/(1+(2π/δ)2)1/2), with ζ we can find the ωn which is ωn=(ωd/(1-ζ2)1/2). The values that were
obtained from Figure 1, Proportional Gain To=0.522, Xo=2071, Tn=1.372, Xn=396, and n being 1. Using
the formals Wn = 7.64. Also calculating the derivational gain, kd=50 N/(m/s)/khw, giving us a kd of 0.0043,
ki=750 N/(m/s)/khw, giving us a ki value of 0.0645. These values are the derivative gain and the integral
gain respectively.
Conclusion
Though this experiment was interesting, the values for the integral gain seem to have
been calculated wrong, as the values needed to be changed to 0.02 to get the correct graph as
seen in the adjusted integral gain graph. Though there also seemed to be a small point in the
cart where it would get hung up and stall as it was moving. These two problems seem to have
kept us from achieving the correct outcome of this experiment.
9|Page
Southern Illinois University Carbondale
Department of Engineering
Bernoulli’s Equation
Lab # 2
Fluid Mechanics
ENGR 370A
Written By: David McKavanagh
Submitted to: Ganesh Ghimire
Completed on:
Wednesday July 8th 2015
Submitted on:
Thursday July 9th 2015
1|Page
Table of Contents
A.
List of Figures
2
B.
Objectives
3
C.
Theory
3
D.
Apparatus
5
E.
Procedure
5
F.
Results
6
G.
Conclusion
8
H.
Appendix
10
I.
Figure 1: Venturi Nozzle
5
II.
Table 1
6
III.
Table 2
6
IV.
Table 3
7
V.
Table 4
7
2|Page
Objectives
It is to show the validity of the Bernoulli equation by gathering data from different points
along a horizontal duct. Gathering the pressure heads and the velocity heads along said duct.
Theory
This experiment focuses on gathering data from points along a horizontal duct called a
Venturi Nozzle. There are multiple forces acting on the flow of fluids through the horizontal
duct. Those forces are: Static Pressure Head, Stagnation Pressure Head, the Velocity Head,
and the Total Energy Head.
The Summation of Forces
∑ =
Where the ∑F is the summation of the forces acting on the fluid traveling through the Bernoulli
Apparatus.
The Bernoulli Equation
1 12
+
+ 1 = =
2
Where p is the pressure, ᵞ is the specific weight of the fluid, V is the velocity, g is the force of
gravity, and z is the elevation of the fluid.
This equation is frequently expressed as:
1
12 2
22
+ 1 +
= + 2 +
2
2
Since there is no elevation component
3|Page
1 12 2 22
+
= +
2
2
To find the Flow Rate
=
∀
Where Q is the volumetric flow rate of the fluid, ∀ is the volume in cubic meters, and t is the time
measured in seconds
Finding the cross section of the flow area,
=
2
4
Where A is the area, and D is the diameter of the Venturi Nozzle. These are the important
equations that are used to find the figures needed in the Bernoulli Equation.
4|Page
Apparatus:
Venturi Nozzle
At least six manometers
Bernoulli Apparatus
At least twelve liters of fluid
Figure 1: Venturi Nozzle
Procedure:
The measurements of the diameter, the distance from a fixed point (called point
A), and the Volume target that must be reached for time where given by the instructor.
Firstly activate the entire system and begin running water through the system to clear
the air out of all of the manometers. Once all of the air is removed from the system start
your timer, adjust the device until there is a steady flow and record the amount of fluid
within the manometers. After ten liters of fluid has flowed through the venturi nozzle
stop the timer and record the amount of time that has elapsed. After recording the
figures for the static pressure heads and the stagnation pressure head (which would be
5|Page
the last of the manometers on the device, adjust the flow rate of the fluid to the second
rate that is to be used in the experiment. Once that flow rate is achieved start the timer
once again, and record the static pressure heads and the stagnation pressure head on
the manometers. Stop the timer once the ten liter amount is reached.
Results
Table 1: First Flow Rate
Volume, L
1.00E+01
Test
Section
Time, t (s)
Volume m^3
3.57E+02
Diameter, d,
(mm)
Flow rate, Q (m^3/s)
1.00E-02
Distance from Test
Section A (mm)
2.80E-05
Static Pressure Head Stagnation Pressure
(mm)
Head (mm)
A
2.50E+01
0.00E+00
9.50E+01
9.60E+01
B
1.39E+01
6.03E+01
9.40E+01
9.60E+01
C
1.18E+01
6.87E+01
9.00E+01
9.60E+01
D
1.07E+01
7.26E+01
8.90E+01
9.60E+01
E
1.00E+01
8.11E+01
8.60E+01
9.60E+01
Cross
Section of
Flow Area, A Velocity, V Velocity
(m^2)
(m/s)
Head (m)
Total
Energy
Head (m)
Table 2: Calculations for First Flow Rate
Distance from Static
Diameter, Test Section Pressure
d (m)
A (m)
Head (m)
Stagnation
Pressure
Head (m)
2.50E-02
0.00E+00
9.50E-02
9.60E-02
4.91E-04
0.00E+00
0.00E+00 9.69E-06
1.39E-02
6.03E-02
9.40E-02
9.60E-02
1.52E-04
1.69E-04
1.45E-09 9.59E-06
1.18E-02
6.87E-02
9.00E-02
9.60E-02
1.09E-04
5.94E-05 1.798E-10 9.18E-06
1.07E-02
7.26E-02
8.90E-02
9.60E-02
8.99E-05
5.32E-05
1.44E-10 9.08E-06
1.00E-02
8.11E-02
9.60E-02
9.60E-02
7.85E-05
4.26E-05
9.25E-11 8.78E-06
6|Page
Table 3: Second Flow Rate
Volume, L
1.00E+01
Test
Section
Time, t (s)
Volume m^3
1.12E+02
Diameter, d,
(mm)
Flow rate, Q (m^3/s)
1.00E-02
8.90E-05
Distance from Test
Section A (mm)
Static Pressure Head Stagnation Pressure
(mm)
Head (mm)
A
2.50E+01
0.00E+00
2.70E+02
2.73E+02
B
1.39E+01
6.03E+01
2.50E+02
2.73E+02
C
1.18E+01
6.87E+01
2.34E+02
2.73E+02
D
1.07E+01
7.26E+01
2.30E+02
2.73E+02
E
1.00E+01
8.11E+01
1.85E+02
2.73E+02
Cross
Section of
Flow Area, A Velocity, V Velocity
(m^2)
(m/s)
Head (m)
Total
Energy
Head (m)
Table 4: Calculations for the Second Flow Rate
Distance from Static
Diameter, Test Section Pressure
d (m)
A (m)
Head (m)
Stagnation
Pressure
Head (m)
2.50E-02
0.00E+00
2.70E-01
2.73E-01
4.91E-04
0.00E+00
0.00E+00 2.76E-05
1.39E-02
6.03E-02
2.50E-01
2.73E-01
1.52E-04
2.46E-04
3.08E-09 2.55E-05
1.18E-02
6.87E-02
2.34E-01
2.73E-01
1.09E-04
1.89E-04
1.82E-09 2.39E-05
1.07E-02
7.26E-02
2.30E-01
2.73E-01
8.99E-05
1.70E-04
1.47E-09 2.35E-05
1.00E-02
8.11E-02
1.85E-01
2.73E-01
7.85E-05
1.36E-04
9.43E-10 1.89E-05
The values presented in tables 1 and 3 were partially given by the instructor, those
being the diameter, the volume, and the distance from test section A. The values
entered into the table, being static pressure head, stagnation pressure head, and time
where found during the experiment. The values in tables 2 and 4 where calculated
using the formula given in the Theory section.
7|Page
Discussion
Accuracy and Precision:
The topic of accuracy and precision is probably the most important aspect of
experimentation, this is true, especially within this experiment. Within the general
populous the terms are interchangeable, while with in the scientific community they
couldn’t be farther from one another. Accuracy refers to the ability to record a
measured variable close to the known value of a substance. Precision refers to the
ability to record two or more measurements close to each other. To ensure a proper
experiment, accuracy and precision is what is needed.
The first results that need to be checked for accuracy and precision would be
calculations from millimeters to meter for the first four columns in the second and fourth
tables. Those would be diameter, distance from test section A, the Static Pressure
Head and the Stagnation Pressure Head.
The second result that needs to be checked would be to ensure that the correct
equations are used to calculate the flow rate, the cross section of flow area, velocity,
velocity head and the total energy head for both flow rate tables.
Probable Sources of Error
The main source of error that would present its self in these experiments would be
human error, if not all of the air was removed from the manometers, or that if the person
recording the numbers from the manometers, watching the time, or watching for the
mark of the volume.
8|Page
Conclusion
The initial objective was met, the experiment definitely show the validity of Bernoulli
Equation. The students gained the knowledge of how to read a Bernoulli Apparatus
correctly and with the proper procedures. A recommendation for a future of the
experiment would be to have a better timer, or a bigger Bernoulli Apparatus that would
be easier to read, to negate the human error. Ensuring that all equations needed for the
experiment would also be a step to reduce the error.
9|Page
Appendix
References Cited
Nicklow, John, PHD. “Engineering Fluid Mechanics -Laboratory Manual.” Fluids. Southern
Illinoi University, # Nov. 2010. Web. 24 June 2014.
10 | P a g e
outs
62%ys
OE
E
Non-Linear
Deformation
0.002
EE
Figure 6
Purchase answer to see full
attachment